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Abstract

We propose to scale learning algorithms to
arbitrarily large databases by the following
method. First derive an upper bound for
the learner’s loss as a function of the number
of examples used in each step of the algo-
rithm. Then use this to minimize each step’s
number of examples, while guaranteeing that
the model produced does not differ signifi-
cantly from the one that would be obtained
with infinite data. We apply the method to
K-means clustering, and empirically observe
its speedup relative to the standard version
on large databases.

1. Introduction

Traditionally, the bottleneck preventing the develop-
ment of more-intelligent systems via machine learning
was the limited data available. However, in many do-
mains the size of the datasets available is now so large
that the limiting factor is learners’ inability to use all
the data in the available time. We propose to over-
come this problem by developing learners that are ef-
fectively able to learn from infinite data in finite time.
By this we mean that, in finite time, they learn mod-
els that are indistinguishable from those they would
learn given infinite data. Our method is based on
bounding the finite-data model’s loss relative to the
infinite-data one as a function of the number of ex-
amples used at each learning step, and then minimiz-
ing these numbers of examples while guaranteeing that
the bound is preserved. We apply the method to the
design of VFKM, a faster version of K-means cluster-
ing. Empirical studies show the advantage of VFKM
relative to standard K-means, and the quality of the
bounds obtained. We then apply VFKM to clustering
a large database of Web page requests for a distributed
caching application. The paper concludes with a dis-
cussion of related work and a summary of contribu-
tions and future research directions.

2. The Method

In this section we present our method for speeding up
a learner while guaranteeing that its loss relative to
the infinite-data case remains bounded.

Let learning algorithm A consist of a sequence of steps
81,82,-+.,8i,.... Assume A is given a training set S
composed of N 1.i.d. (independent and identically dis-
tributed) examples. Let n; < N be the number of ex-
amples used in step s;, and let @ = (n1,n9,..., 14, .. .).
If step s; consists of making a decision between a finite
number of choices, let §; be the probability of making
the wrong decision at that step. If s; consists of esti-
mating a real value, let §; be the probability that the
true value differs from the estimated one by more than
€;. Express §; and ¢; as functions of n; using Hoeffding
or similar bounds: §; = f(n;), ¢, = g(n;) (Hoeflding,
1963). Let L{M;,M5) be a loss function penalizing
the difference between models M; and Ms. Let M
be the model learned by A using infinite data at each
step (i.e., with Vi n; = 00). Let My be the model
learned by A using n; examples in step s;. Derive a
bound on L{Myz, M) as a function of §; and ¢; (if ap-
plicable), and therefore as a function of n;, for all steps
of A: L(Mpz, M) < Ga,s(7) with probability at least
1 — F4,s(7), where the subscripts A and S indicate
that the functions F' and G depend on the learner A,
and may depend on the training set S. When A is run
on S, Fa s(7) and G 4,5() can be used to inform the
user of the quality of the results. Let the user require-
ments be that L{Mz, M) be at most € with proba-
bility at least 1 — 8. If Ga,5(7) < € and Fu () < 6,
the training set is sufficiently large; otherwise it may
be advisable to gather more data. Conversely, we can
use knowledge of Fi4 s(7) and G 4,5(7) to determine 7
that minimizes A’s running time T'(7) while satisfying
user requirements (6,€¢). Where feasible, this method
should result in speedup factors that increase without
limit as the training set size grows, without significant
loss in model performance according to the given cri-
teria.



For example, in decision tree induction the basic step
is deciding which attribute to test at a node, and §;
is the probability that the wrong attribute is chosen
for the ith node (“wrong” in the sense that it is dif-
ferent from the attribute that would have been chosen
at the node given infinite data). In Domingos and
Hulten (2000) we applied a more primitive version of
the method above to decision tree induction under a
variety of loss functions (difference in error rate be-
tween the trees, probability that they make different
predictions, probability that a random example follows
different paths in the two trees). This allowed the re-
sulting algorithm to learn on databases several orders
of magnitude larger than those feasible for C4.5, with
corresponding gains in accuracy. In this paper we gen-
eralize the previous treatment and apply it to K-means
clustering.

3. A Loss Bound for K-Means

K-means (MacQueen, 1967) is one of the most widely
used clustering algorithms. It is shown in pseudo-code
in Table 1. The output of K-means is a set of K cluster
centroids C' = {e1,...,¢ck}. A natural loss function to
use when comparing two clusterings C; and Cs having
the same number of clusters K is!

K
L(C1,Ca) = Y ller — call? (1)
k=1

In this section we develop a bound for this loss as a
function of the number of examples n; used in each
iteration of K-means. In the standard version of
K-means described in Table 1, Vi n; = N. In the
next section we develop a faster version of K-means
that uses only as many examples in each iteration as
required to meet pre-specified user requirements on
L(Cy,Cx).

Consider a real-valued random variable z whose range
is R. Suppose we have made n independent obser-
vations of this variable, and computed their mean Z.
The Hoeffding bound (Hoeffding, 1963) states that,
with probability at least 1 — §, the true mean of the
variable is within € of Z, where

_ [R*In(2/8)
V" @)

The Hoeffding bound has the very attractive property
that it is independent of the probability distribution
generating the observations. The price of this gen-

IThis assumes the correspondence between centroids is
given. If not, the loss should be the minimum of this mea-
sure over all possible correspondences; in practice, the best
correspondence is typically found by greedy search.

Table 1. The K-means clustering algorithm.

S is a set of examples,

K is a desired number of clusters,

~ is a convergence threshold.
Output: C is a set of cluster centroids {¢i,..

Inputs:

oy CK}.

Procedure K-Means (5, K, M)
i=0.
Fork=1to K
Let ¢xo be a random example from S.
Repeat
i=1i+ 1.
Let Sg; =
{z € S|V(FE #E) |l — chi-1ll < |2, eri-1)l|}-
Fork=1to K
Cri = |SIT| Zweski Z.
Until Zle ||C]”' bt Ck,i—1||2 S .
Return C = {c1j,...,Cki}-

erality is that the bound is more conservative than
distribution-dependent ones (i.e., it will take more ob-
servations to reach the same § and €). Although our
method is in principle applicable with any relevant
bound, in this paper we will use the Hoeffding bound,
for the sake of generality.

At each iteration, K-means estimates the position of
each centroid as the average of the examples it wins.
There are two sources of error in this estimate. One
is the finite number of examples used; for each coor-
dinate of the cluster centroid cgq, this type of error is
bounded by Equation 2, with n as the number of ex-
amples won by the cluster and R as the coordinate’s
range (assumed known or reasonably approximated).
We call this type of error sampling error. The other
source of error is that the centroid positions at the be-
ginning of the iteration may not be the correct ones,
potentially resulting in examples being assigned to the
wrong cluster. (By “correct” centroid positions we
mean those that would be obtained by K-means with
infinite data.) We call this type of error assignment er-
ror. The initialization step is error-free, assuming the
finite- and infinite-data K-means are initialized with
the same centroids. Thereafter the assignment errors
in one iteration are a function of the total errors in the
previous iteration.

Let D be the dimensionality of the domain. Let ¢gq4; be
the infinite-data value of the dth coordinate of the kth
centroid at iteration i, éggq; be the corresponding finite-
data estimate, and ¢r4; be the estimate that would be
obtained if there were no assignment errors in iteration



i. Let €xq; be a bound on the total error in estimating
Crait Crai — €rai < Crai < Crai + €rqi- Then the dis-
tance between the finite- and infinite-data centroids

[|éri — cki|| is bounded by ex; = \/ZdD:1 €25 Sup-

pose that at iteration ¢ example z is won by centroid
Cri, which is at distance dg; from it. Then, if there is
another centroid égs; such that dy; — ey < dpi + €pi,
the example may have been incorrectly assigned to ¢g;.
The number of examples ﬁ;; satisfying this condition is
an upper bound on the number of examples n;; incor-
rectly assigned to éx;. Similarly, the number of exam-
ples fi,; for which the condition dg; + €x; < dprs — €x7;
holds, with ¢x; being the centroid that won the ex-
ample (k' # k), is an upper bound on the number of
examples ng; that éy; did not win but should have.
Let x;:di be the average of the dth coordinate of the
examples that ég; won incorrectly, and similarly for
T4 Let fig; be the number of examples that éx; won.
Then the number of examples that it should have won

is figs — n;; + ny;, and
|Crai — Crail
~ .A L + + — —_

o la o TkiCkdi — MpiTra + PpiTha

- Ckdi N F —

Npy — N T Ny,

Y4 _oa — (= oA

ng(Thgs — Crdi) — Mg (Trgs — Creai)

(3)

fop; — n;; +ny;
An upper bound on this expression can be obtained
by upper-bounding the numerator and lower-bounding
the denominator. Since 0 < n;; < ﬁ;; and 0 <
Ny < g, g — n;; +ny; > g — ﬁ;; Let S,ji be
the set of examples that may have been incorrectly
won by &, and similarly for S ;. Given an exam-
ple z with coordinates zg4, let Azpgy = Zq — Cpai
ifz € S,ji and Azpg; = —(xq — Gras) if z € Sy
Then an upper bound on the numerator of Equation 3
is maX{Zw|Awkdi>0 Axkdi’Zw|Awkdi<0 |A1’.kdi|}7 since
the absolute value of a sum is upper-bounded by ei-
ther the sum of the positive elements or the sum of the
absolute values of the negative elements. Thus

|€rai — Crail
ma'X{ZwlAwkdi>0 Axkdi’ ZwlAwkdi<0 |Axkdi|}
- ka n;;

(4)
This bound is tight in the sense that equality can oc-
cur, but given the information available in a specific
run of K-means (positions of examples relative to cen-
troids, etc.) it might be possible to obtain a tighter
bound for most cases; we leave this as future work.

Let R; be the dth coordinate’s range, and ng; be the
number of examples that é; should have won (i.e., if
there were no assignment errors). Then

R21n(2/6) R21n(2/6)
Crai — Crai| < d < d 5
|Cras — crai| < o =\ 2ps — ) (5)
and
R R B R21n(2/6
(6oas — cuail < 1onai — Goail + 1| 22O _ e

2(fg; — n;;)

where |érq4; — €rai| is bounded by Equation 4. The

total error in cg; is bounded by \/ZdD:1 eidi. This

can in turn be used to bound the assignment er-
rors at the next iteration |égq,i+1 — Cra,i+1| according
to Equation 4, and so on recursively, starting from
VEk,d €10 =0. If the finite- and infinite-data K-means
converge in the same number of iterations m, the loss
due to finite data is (see Equation 1)

K D
Z €em = Z Z 6idm (7)
E=1d=1
with the eggn’s given by Equatlon 6. In general (with
probability specified below), infinite-data K-means
converges at one of the iterations for which the mini-
mum possible change in centroid positions is below the
convergence threshold v (see Table 1), and is guar-
anteed to converge at the first iteration for which
the maximum possible change is below +. More pre-
cisely, it converges at one of the iterations for which
Zszl ZdDzl(maX{|@kd,i—1 —8rai| —€kd,i—1 —€rai, 0})* <
v, and is guaranteed to converge at the first itera-
tion for which Zle ZdDzl(lékd,i—l - ékdil + €pdi-1 +
€xai)? < 7. In order to obtain a bound for L(Cy,Cy),
finite-data K-means must be run until the latter con-
dition holds. Let M be the set of iterations at which
infinite-data K-means could have converged. Then we
finally obtain

L{C5,C) < max {Z > (1ekdi — eham| + €ras)® }

k=1d=1
(8)

where m is the total number of iterations carried out.
This bound holds if all of the Hoeffding bounds for
the €x4;’s hold. Since each of these bounds holds with
probability at least 1 — 8, the bound above holds with
probability at least 1 — §* = (1 — §)%¢™, (pessimisti-
cally) assuming independence. Notice that the expo-
nential dependence of 1 — §* on kdm is offset by the
Hoeffding bound’s logarithmic dependence on §. The
bound we have just derived utilizes run-time informa-
tion, namely the distance of each example to each clus-
ter in each iteration. This allows it to be tighter than
a priori bounds. Notice also that it would be trivial to
modify the treatment for any other loss criterion that
depends only on the egq’s (e.g., absolute loss).

L(Cy,Cx)



4. A Fast K-Means Algorithm

We now apply the previous section’s result to reduce
the number of examples used by K-means at each it-
eration while keeping the loss bounded. We call the
resulting algorithm VFKM. The goal is to learn in min-
imum time a clustering whose loss relative to K-means
applied to infinite data is at most €* with probability
at least 1 — §*. Using the notation of the previous
section, if n; examples are used at each iteration then
the running time of K-means is O(KD ;" n;), and
can be minimized by minimizing 7" n;. Assume for
the moment that the number of iterations m is known.
Then, using Equation 1, we can state the goal more
precisely as follows.

Goal: Minimize Y .- n;, subject to the constraint
that 30, ||ékm — chml|? < € with probability at least
1—6*.

A sufficient condition for 3, [|ékm — crml? < €*
that V& ||€km — Ckm|| £ /€*/k. We thus proceed by
first minimizing »";*, fig; subject t0 ||&xm — chm|| <
\/€*/k separately for each cluster.? In order to do this,

we need to express ||égm — Ckm|| a8 a function of the
fig;’s. By the triangle inequality,

I[€ri — crill < |[€ri — Crill + |ICki — crill — (9)

By Equation 5,

D
R21n(2/6 R21n(2/6
|leki — cril| < Z d ( {+) = - ( {Jr)
a=1 2(nkl~ - n,“.) 2(nkl~ - n,“.)
(10)
where R2 = 37 R% and 6 =1 — **%/1— & per the

discussion following Equatlon 8. By Equation 4,

Zd 1 kd'
[|eri — Crsl| < —F : (11)
fops — g
where Xkdi = max{ZwlAwkdpo Axkdi’Zw|Awkdi<0

|Azrgi|}. To keep the analysis tractable, we upper-
bound ﬁ;; and the numerator of Equation 11 by func-
tions proportional to fiz;€z,;—1. This captures the no-
tion than the number of potentially incorrectly won
examples in one iteration should increase with the to-
tal error in the previous one, and similarly for the effect
of the incorrectly won or lost examples on ) ¢ =
Thus, letting the proportionality factors be respec-
tively bg; and ag;, and using Equations 10 and 11,
Equation 9 becomes

2This will generally lead to a suboptimal solution; im-
proving it is a matter for future work.

Qki€h,i—1
1 — bri€r,i1

IA

[[€ri — crill

. R?1n(2/6)
2714 (1 — bpi€r,i—1)

= €k (12)

Approximating eg; by the first two terms of this ex-
pression’s Taylor expansion around a point eg’i_l, and
discarding terms in the first derivative that become
negligible as fig; increases, we obtain

€ki = Qpi€k,i—1 + Bri (13)
with
Qi

ak' = -_— 14
’ (1= brieg i_1)? 14

arie) iy R21n(2/0)

Bri = 0 + = i)

1-— bkiek,i—l ani(l - bkiek,i—l)

—akieg,i—l (15)

Given Equation 13 and ez = 0, it can be shown by
induction that

ka—25kz H ak]—z\;%_""k (16)

j=i+1 i=1
where
R21n(2/6)
Thi = Alom 0 O
i (1—bkz€kz 1 ]1:!_1
{ 2 m
akibri(ep,i—1)
Ty = g, 17
b ; 1 — bri€r,i— 1)21':111 i (7

Since ||égm — Ckml|| < €xm (Equation 12), the target
bound will be satisfied by minimizing Y. | fg; subject
to €gm = \/€*/k. ® We can thus apply the method
of Lagrange multipliers with the Lagrangian function

(see Equation 16)
f-i anl + A Z ki _ T — i (18)
Vg k

Equating to zero the gradient of L(#, A) with respect
to the fig;’s and A and solving for the 7iz;’s yields

2
i1 {/ThiTE
figi = | —F=— (19)
/5 Tk

3This may lead to a suboptimal solution for the fiz;’s,
in the unlikely case that ||éem — Ckm|| increases with them.




Let fx; be the fraction of examples that cluster & wins
in iteration i: fr; = fig;/n;. Then, for each cluster to
win in iteration ¢ the number of examples required by
Equation 19, we need to make

n; = max { %} (20)
ki

with the fig;’s given by Equation 19.

The VFKM algorithm consists of a sequence of runs
of K-means with each run using more examples than
the last, until the bound L{Cy,C) < €* is satisfied,
with L(Cy, Cs) bounded according to Equation 8. In
the first run, VFKM postulates a maximum number
of iterations m, and uses it to set § = 1 — **%/1 — é*.
If m is exceeded, for the next run it is set to 50% more
than the number needed in the current run. (A new
run will be carried out if either the §* or €* target is
not met.) The number of examples used in the first
run of K-means is the same for all iterations, and is

set to
K (R\*>. (2

This is 10% more than the number of examples that
would theoretically be required in the best possible
case (1o assignment errors in the last iteration, leading
to a pure Hoeffding bound, and a uniform distribution
of examples among clusters). The numbers of exam-
ples for subsequent runs are set according to Equa-
tion 20. For iterations beyond the last one in the previ-
ous run, the number of examples is again set according
to Equation 21. A run of K-means is terminated when
the convergence criterion Zszl ZdDzl (1erd,i—1 —Crai| +
€kd,i—1 T €rdi)> <y is met (see discussion after Equa-
tion 7), or two iterations after the regular K-means
criterion Zszl lleki — ek,i—1]|> < v is met, whichever
comes first. The latter condition avoids overly long
unproductive runs. If the user target bound is €, €* in
Equations 21 and 19 is set to min{e,y/3}, to facilitate
meeting the first criterion above. If at any iteration
fi; = fup; for some cluster (making ay; (Equation 14)
and Gg; (Equation 15) undefined), we restart the run
with twice the number of examples. When ﬁ;; = Ng;
occurred in a run, or when the convergence threshold
for infinite-data K-means was not reached even when
the whole training set was used, VFKM reports that
it was unable to find a bound; otherwise the bound
obtained is reported.

VFKM ensures that the total number of examples used
in one run is always at least twice the number N used
in the previous run. This is done by, if > n; < 2N,
setting the n;’s instead to n} = 2N(n;/ > n;). If at
any point Y n; > m|S|, where m is the number of

iterations carried out and S is the full training set,
Vi n; = | 9] is used. Thus, assuming that the number
of iterations does not decrease with the number of ex-
amples, VFKM’s total running time is always less than
three times the time taken by the last run of K-means.
(The worst case occurs when the one-but-last run is
carried out on almost the full training set.)

The run-time information gathered in one run is used
to set the n;’s for the next run. In each itera-
tion, we record the 7ig;’s (and therefore the fg;’s)
and the actual bounds obtained €z;. These are used
as the €.’s around which the Taylor expansion of
the bound is carried out (see Equations 12-15). We
compute each bg; as ﬁ;/(ﬁkieg’i_l), and each ai; as

ZdDzl X34/ (Mki€y ;1) (see Equation 11). The ap-
proximations made in the derivation will be good, and
the resulting n;’s accurate, if the centroids’ paths in
the current run are similar to those in the previous
run. This may not be true in the earlier runs, but
their running time will be negligible compared to that
of later runs, where the assumption of path similarity
from one run to the next should hold.

5. Empirical Study

We conducted a series of experiments on synthetic
datasets to compare VFKM with K-means. All
datasets were generated by mixtures of spherical Gaus-
sians with means py in the unit hypercube. Each
dataset was generated according to three parameters:
the dimensionality D, the number of mixture compo-
nents K, and the standard deviation of each coordi-
nate in each component ¢. The ui’s were generated
one at a time by sampling each dimension uniformly
from the range (20,1 —20). This ensured that most of
the datapoints generated were within the unit hyper-
cube. The range of each dimension in VFKM was set
to one. Rather than discard points outside the unit hy-
percube, we left them in to test VFKM’s robustness to
outliers. Any puj that was less than (vVD/K)o away
from a previously generated mean was rejected and
regenerated, since problems with very close means are
unlikely to be solvable by either K-means or VFKM.
Examples z were generated by choosing one of the ug’s
with uniform probability, and setting the value of each
dimension of the example z; by randomly sampling
from a Gaussian distribution with mean g4 and stan-
dard deviation o.

For each choice of settings (D, K,0) we generated a
database of 10 million examples and ran VFKM and
K-means on it. The algorithms were started from the
same set of initial centroid locations, which were se-



Table 2. Experimental results. D is the dimensionality of
the dataset. #B is the number of runs in which a bound
was found (0, 1 or 2). Times are in seconds. All values are
averages of two runs (except that, when a bound was only
found once, that value is reported).

D | Algorithm | #B | Time | Bound Loss
2 VFKM 0 2441 - 209811
K-means 0 940 - 213600
4 VFKM 0 3639 - .042148
K-means 0 2486 - .022181
6 VFKM 2 868 | .000294 | .000002
K-means 2 1711 | .000110 | .000005
8 VFKM 2 1435 | .000441 | .000003
K-means 1 2194 | .000114 | .000017
10 VFKM 2 1196 | .000475 | .000001
K-means 2 2686 | .000134 | .000000
12 VFKM 2 1691 | .000900 | .000002
K-means 1 3709 | .000149 | .000000
14 VFKM 1 5812 | .001197 | .652042
K-means 1 4913 | .000192 | .720955
16 VFKM 2 1888 | .000571 | .000001
K-means 1 4189 | .000194 | .000000
18 VFKM 1 6829 | .000479 | .732382
K-means 1 3912 | .000223 | .732382
20 VFKM 2 2377 | .000711 | .000002
K-means 2 5167 | .000247 | .000001

lected by scanning through the the database and us-
ing each example that was more than v/D/(2K) away
from all previous selected examples, until K examples
were found. The convergence threshold v was set to
0.0001DK; this appropriately scales it linearly with K
and D. VFKM’s other parameters were 6* = 0.05 and
€* = v/3. We ran the experiments on two 800Mhz
Pentium III computers under Linux. Table 2 contains
results on 20 different databases, generated by holding
K constant at 5, o constant at 0.1, varying D from 2
to 20 in increments of 2, and generating two datasets
for each resulting parameter combination. The bound
is computed according to Equation 8. To compute the
loss (Equation 1), we match the centroids obtained
with the closest true ones using a greedy procedure.
Notice that the losses are relative to the true centroids,
while the bounds are relative to infinite-data K-means,
and thus the two are not directly comparable.

VFKM took between 2 and 5 runs for all settings.
When VFKM finds a bound it is about twice as fast
as K-means. (It is also faster, and has lower loss, than
K-means run on half the data.) However, on several
runs it was not possible to find bounds for either al-
gorithm. On these runs, VFKM took about twice as
long as K-means. It is interesting to notice that when

VFKM did not have a bound both algorithms finished
with much higher loss than when a bound was ob-
tained. Thus the fact that VFKM is unable to find a
bound may itself be valuable information to the user,
suggesting that the resulting clustering is suspect and
that more data, a different initial configuration, or a
different K may lead to better results. In general, we
observe that (not surprisingly) VFKM has difficulty
in finding a bound when two or more of the cluster
centroids pass near each other during a run, because
this leads to high values of ﬁ;; and X7, (see Equa-
tion 11). Interestingly, the hardest problems (high
losses, no bounds) seem to be the lowest-dimensional
ones. (This observation is necessarily tentative, given
the high variance of runs and the fact that we only
have two data points for each value of D.) We at-
tribute this to the fact that in higher dimensions the
data is sparser and the average distance between cen-
troids is greater, making close brushes less likely. We
observed that VFKM appropriately varied the number
of examples in each iteration, increasing it in the early
iterations at the expense of later ones when the early
errors dominated (after propagation), and vice-versa.

We also varied K and o; space limitations preclude a
full reporting of results. We found that lower values of
K and o generally made it easier for VFKM to find a
bound, except that for very small ¢’s (below 0.05) the
results become extremely sensitive to the selection of
good initial centroid locations.

VFKM'’s speedup relative to K-means will generally
approach infinity as the database size approaches in-
finity. The key question is thus: what are the database
sizes at which VFKM becomes worthwhile? The ten-
tative evidence from these experiments is that they
will be in the millions. Databases of this size are now
common, and their growth continues unabated. In the
next section we report on VFKM’s application to one
such database.

6. Application to Web Data

We are currently applying VFKM to mining the
stream of web page request emanating from the whole
University of Washington main campus. The data is
described in detail in Wolman et al. (1999). In our
experiments we used an anonymized trace of all the
external web accesses made from campus during a one-
week period in May 1999. The trace file contains 82.8
million requests from 23,000 clients. Each request is
tagged with an anonymized organization ID which as-
sociates it with one of the 170 organizations (colleges,
departments, etc.) within the university. One poten-
tial use of this data is to find subsets of the organi-



zations that would benefit from sharing a single web
cache rather than using individual ones. This can be
accomplished by identifying sets of web pages that are
accessed more by the clients in some small group of or-
ganizations than by clients outside of this group. We
approach the problem as follows. We first select the D
organizations with the largest number of requests in
the trace file, Oy, O1,...,0p; D = 10 in the experi-
ment we report. We then split the trace into a series of
equal-duration time slices Ty, T7,...,1%; an hour each
for this experiment. Within each time slice we create a
matrix X with one row for each of the first n cacheable
web pages requested (400,000 in this experiment) and
one column for each of the D organizations, with Xj;
containing a count of the number of times page i was
accessed by organization j. We then normalize X to
remove the effect of the relative activity levels of the
organizations and the relative popularity of the web
pages. This is done by scaling each column and then
each row to sum to 1. Each row of X is an example.
Using this procedure we generated a database contain-
ing N = 20 million examples. An example where one
dimension is 1 and the rest are 0 represents a web page
that is only accessed by one organization; an example
where each dimension is % represents a web page that
is equally important to all the organizations; and an
example where most of the dimensions are near 0 and
a few are large represents a web page that is shared
among a subset of the organizations. By finding clus-
ters of these subset-shared examples we identify op-
portunities for shared web caches.

We ran VFKM on this data using 6* = 0.05, v = 0.01,
€ = /3, and K € {5,7,10}. The runs for K = 5
and K = 7 achieved loss bounds relative to infinite-
data K-means of 0.00197 and 0.00206, respectively;
the K = 10 run did not achieve a bound. The run-
ning times were: 8715 s for K = 5, 7057 s for K = 7,
and 14055 s for K = 10. From the centroids found in
the K = 5 and K = 7 runs we were able to identify
three shared cache locations ({Os, 04,058}, {O1,0¢}
and {Os, 05,0s}), and what pages to cache at them.
Sharing a cache increases its benefit because there will
be fewer, but relatively more active, objects competing
for the limited cache space. These results are satisfy-
ing because we mined a tiny fraction of the essentially
limitless stream of web requests, and yet we are highly
confident that more data will not improve the results.

7. Related Work

In Domingos and Hulten (2000), we successfully ap-
plied a more primitive version of the method described
here to decision tree induction. This problem and

K-means clustering differ in the type of learning (su-
pervised vs. unsupervised), the type of learning step
(discrete decision vs. continuous parameter estima-
tion), and the type of loss function used. The fact
that we were able to successfully apply the method in
both cases is encouraging evidence of generality.

This direction of research was originally inspired by
the work of Maron and Moore (1994) on Hoeffding
races for model selection. Our work can be viewed
as bringing the use of Hoeffding bounds down to the
level of individual learning steps. A similar idea for the
case of decision tree induction was proposed by Gratch
(1996). Other references on subsampling methods for
supervised learning are given in Domingos and Hul-
ten (2000). To our knowledge, our work is the first
to provide non-trivial guarantees of closeness to the
infinite-data case. It would be interesting to combine
VFKM with Hoeffding races to efficiently choose the
number of clusters with the same type of guarantees.

John and Langley’s (1996) notion of “probably close
enough” learning can be viewed as a predecessor of
our proposal. They consider a finite-size database (as
opposed to an infinite one) as the reference for loss,
and their approach is based on fitting a learning curve,
offering no guarantees that the criterion will be satis-
fied. More generally, progressive sampling approaches
attempt to iteratively determine the best number of
examples to use, often via extrapolation of learning
curves. However, they are hindered by the fact that
real learning curves do not fit power laws and other
simple forms well enough for reliable extrapolation
(Provost et al., 1999). Our method provides guaran-
tees that the necessary number of examples to satisfy
a loss criterion has been reached. The price of this
guarantee is that more examples than strictly neces-
sary may be used. However, compared to progressive
sampling our method has the additional advantage of
allowing optimization of the number of examples used
in each learning step, as opposed to determining only
the number used by the whole algorithm.

Scalable clustering algorithms have been the subject
of much recent research. Representative examples are
CLARANS (Ng & Han, 1994), BIRCH (Zhang et al.,
1997) and DENCLUE (Hinneburg & Keim, 1998).
An advantage of VFKM relative to these systems is
that its input-output behavior is equivalent to that of
a simple, well-understood and widely used clustering
method (K-means), making its results easier to inter-
pret and communicate. Bradley et al. (1998) recently
proposed an ad hoc method for speeding up K-means.
We plan to compare it with VFKM, and possibly com-
bine the two.



Our method bears an interesting relationship to re-
cent work in computational learning theory that uses
algorithm-specific and run-time information to obtain
better loss bounds (e.g., Freund (1998), Shawe-Taylor
et al. (1996)). The key difference is that we attempt
to bound a learner’s loss relative to the same learner
running on infinite data, instead of relative to the best
possible model (or the best possible from a given class).
We also make more extensive use of run-time infor-
mation. These two changes potentially make realistic
bounds for widely-used learners (e.g., ID3, K-means)
possible for the first time. However, being worst-case
bounds, they are still necessarily pessimistic for most
cases. Greater speedups might be obtainable by using
expected loss instead of a loss bound, as in the process-
oriented evaluation framework of Domingos (1999).

8. Conclusion

In this paper we proposed a method for minimizing
a learner’s running time while guaranteeing that the
model it produces is not significantly different from
the one it would given infinite data. The method is
based on bounding the learner’s loss as a function of
the number of examples used at each step. We applied
it to K-means clustering, and observed the speedups
obtained on large databases.

Directions for future work include: detecting early
on cases where a bound will probably not be found;
further refining VFKM and applying it to other
databases; improving the bound on K-means’ loss
(e.g., by making more extensive use of run-time infor-
mation); extending our method to incorporate active
sampling; and applying it to other learners, starting
with the EM algorithm for mixtures of Gaussians.
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